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The method of ma thema t i ca l  s t a t i s t i c s  is used  for  analyzing the des iccat ion of solid p a r t i c l e s  
during pneumat ic  t r anspor t ,  with the effect  of turbulent  gas  f luctuat ions on the motion of p a r -  
t t c les  taken into account.  

1. Introduction.  A theore t ica l  ana lys i s  of the desiccat ion of solid p a r t i c l e s  in a suspended state  
shows that  two c h a r a c t e r i s t i c  c a s e s  mus t  be dist inguished here:  

a. The turbulent  f luctuat ions a r e  rapidly  decaying and, because  of the smal l  s ize of pa r t i c l e s ,  do not 
affect  the motion of the l a t t e r .  

b. The size of p a r t i c l e s  is p r e s u m a b l y  such that  turbulent  gas  f luctuations affect  the i r  motion s igni f i -  
cantly.  Owing to the r andom turbulence  in the gas  s t r e am,  this  p r o c e s s  mode mus t  be analyzed by 
methods  used  in the theory  of random p r o c e s s e s .  

In all the technical  l i t e r a tu re  known to the author  these  p r o b l e m s  have not been d i scussed  thoroughly 
enough. 

Some s tudies  have been publ ished dealing with the pneumatic  t r a n s p o r t  of p a r t i c l e s  by a turbulent  gas  
s t r e am,  but without r e so r t i ng  to ma thema t i ca l  s t a t i s t i c s  as  a method of ana lys i s .  Of p a r t i c u l a r  in te res t  
among these  s tudies  is  the one made by D. B. Spalding [4]. 

Cer ta in  genera l  ma themat i ca l  techniques  employed by Spalding will be helpful in a s ta t i s t ica l  i n t e r -  
p re ta t ion  of the given physica l  phenomenon.  

2. Phys ica l  Model. We cons ider  a monod i spe r se  s y s t e m  of solid pa r t i c l e s  in an unbounded turbulent  
gas  s t r e a m .  The moi s t  p a r t i c l e s  and the turbulent  g a s  a r e  engaged in the des iccat ion p r o c e s s ,  i . e . ,  in a 
t r a n s f e r  of heat  and m a s s .  The m o i s t u r e  content in the p a r t i c l e s  u is  a function of t ime  T and of the space  
coordina tes ;  the location of a pa r t i c l e  is  defined by the r a d i u s - v e c t o r  r .  Inasmuch  as a turbulent  gas  
s t r e a m  t r anspor t i ng  such p a r t i c l e s  is a r andom phenomenon, the i r  mo i s tu r e  content u is  obviously a r a n -  
dom quantity and a function of the r andom va r i ab le  T = {r, r} (r denoting the r a d i u s - v e c t o r  of an a r b i t r a r y  
point in the t h r ee -d imens iona l  Eucl idean space,  and ~ denoting t ime) .  

In this case  the p r o b l e m  can be fo rmula ted  in t e r m s  of the probabi l i ty  density f(u, T) of m o i s t u r e  con-  
tents  u in pa r t i c l e s ,  i . e . ,  

P ( u < ~ l ( T ) < . - -  du) = [(u, T)du,  (1) 

where  f(u, T)du is the probabi l i ty  that  the speci f ic  mo i s tu r e  content ~(T) in p a r t i c l e s  of a vo lume e lement  
5V containing the point r l ies  within the in te rva l  [u, u + du]. The volume e lemen t  5V will be a s s u m e d  suf -  
f icient ly l a rge  to contain a definite s ta t i s t i ca l  amount of pa r t i c l e s ,  and yet  suff iciently smal l  for  the s t a t i s -  
t ical  p r o p e r t i e s  of these  p a r t i c l e s  to be un i fo rm throughout.  
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F r o m  this definition of f(u, T) follows, obviously, that f(u, T)du may be in terpreted as the rat io of 
the mass  of par t ic les  with a mois ture  content within the infinitesimal interval  [u, u + du] (i. e . ,  d2M u+du) 
to the total mass  of all par t ic les  and all the gas within the given volume element:  

d~M u+du 
" (2) [ (u, T) du = dM,  

F r o m  definition (2) follows that the probabili ty density f(u, T) is a continuous flmction T and signifies 
the concentrat ion of par t ic les  whose mois ture  content, r e f e r r e d  to a unit m a s s  of mixture and a function of 
the specific mois ture  content u as well as of the space- t ime  var iable  T, l ies  within the interval [u, u * du]. 

3. Derivation of the Differential Equation Describing the Physica l  P r o c e s s .  We consider  a turbulent 
gas s t r eam which c a r r i e s  solid par t ic les .  We assume that a change in the specific mois ture  content in the 
par t ic les  of a heterogeneous gas--sol id  mixture is caused by: 

a) mass  t r ans fe r  f rom the par t ic les  to the turbulent gas s t ream; 

b) random motion of par t ic les  in the turbulent gas s t ream.  

In o rder  to derive the differential equation which will descr ibe this physical  p rocess ,  we single out 
a volume element 5V in space according to the definition just given. We then obtain the relations,  one by 
one, which describe the physical  p rocesses  involved. 

Mass Trans fe r  f rom the Pa r t i c l e s  to the Turbulent Gas. We consider  a monodisperse sys tem of so l -  
id par t ic les  ca r r i ed  by a turbulent gas s t ream,  and let every  part icle  be charac te r i zed  by its m e a n - o v e r -  
the-volume specific mois ture  content u. 

The loss  of mass  of par t ic les  dm during an element of time, due to mass  t r ans fe r  to the ambient m e -  
dium, is descr ibed by the equation 

- -  dm = s ~  (x  M x) d'~, (3) 

where the specific surface of a sys tem of par t ic les  is s (m2/kg). The desiccation rate during the f i r s t  pe-  
riod is then< 

du 
d'~ s[J~ (x M - -  x). (4) 

During the second period du/d~ depends on the thermal  conductivity and the hygroconducttvity of the dried 
par t ic les ,  i . e . ,  mainly on their  internal state. 

Fo r  a qualitative analysis,  however,  it suffices to describe the effect of internal conditions on the 
desiccation p rocess  by any known equation for the desiccation rate. 

Starting out with the conventional Lykov equation [5] for  the dec reas ing- ra te  period, we have the r e l -  
ative rate 

(du/d'O 

( du / d'O~,a.~ 

with (du/d~)ma x denoting the desiccation rate  during the cons tant - ra te  period. 

According to [6], the relat ive desiccation rate • is proport ional  to (U--UE). For  this reason,  it can 
be represented  as a general  function 

X = ~ (u - -  uE). (S) 

During the f i r s t  period of desiccation • is equal to unity. 

On the basis  of Eq. (5), we can now general ize the equation for  the desiccation rate during the con-  
s tant - ra te  period (4) and during the decreas ing- ra te  period 

du 
s13~ (x M - -  x) z (u ue). (s) 

d'r 

On the assumption that the equil ibrium mois ture  content in a mater ia l  during desiccation var ies  within a 
nar row range only, one may r ega rd  this equilibrium mois ture  content as constant and, instead of Eq. (6), 
write 
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du 
= - - s ~ ( x M - - x ) z ( u ) .  (7) 

dx 

It follows f r o m  the physical  a spec t s  of des iccat ion that, a p p a r e n t -  
ly, the quantity S/3x(XM--x) depends only on the physica l  p r o p e r -  
t i e s  of the drying agent: 

a) the m a s s  t r a n s f e r  coeff icient  fix, r e f e r r e d  to the d i f fe r -  
ence between the mo i s tu r e  content l eve l s  in the drying 
agent, depends only on the hydrodynamics  and the t h e r -  
modynamics  of flow around a given par t ic le ;  

b) the quantity x M is  propor t iona l  to the mo i s tu r e  content 
in the drying agent  at the par t i c le  su r face .  During the 
f i r s t  pe r iod  of desiccat ion x M is, in fact ,  equal to the 
m o i s t u r e  content in the drying agent  at the su r face  of 
f r ee  liquid when the l a t t e r  evapo ra t e s  adiabat ical ly .  Then 
x is equal to the mo i s tu r e  content in the drying agent  out-  
side the diffusion boundary l aye r  of a par t i c le .  

If  the specif ic  sur face  of a given ma te r i a l  s is  known, then 
the quantity 

r = s ~  (x  M - -  x)  (8) 

may  be r ega rded  as  a function of the physical  p r o p e r t i e s  of the 
turbulent  gas  which t r a n s p o r t s  pa r t i c l e s  of that ma te r i a l .  

It  follows f r o m  the p reced ing  ana lys i s  of the m a s s  t r a n s f e r  
p r o c e s s  in the ga s - - so l i d  s y s t e m  that  the k ine t ics  of this  phys ica l  
phenomenon can be desc r ibed  by the genera l  re la t ion  

du 
- -- c x  (.). (9) 

d~ 

The material balance in a volume element 6V, namely the 

change of moisture content in particles it contains can, with the 

aid of Eq. (9) and application of variational calculus, be written 

as 

OT , p Ou f (u; r, T) ~((u) , (10)  

where the subsc r ip t  P denotes a change in probabi l i ty  density with 
t ime  and due to m a s s  t r a n s f e r  f r o m  the pa r t i c l e s  to the turbulent  
gas  s t r e a m .  

Turbulent  S t ream of P a r t i c l e s .  The t ime var ia t ion  of ab-  
solute probabi l i ty  f(u; r ,  ~-) in the given volume e lement  6V is  a lso  
affected by the turbulent  s t r e a m  of p a r t i c l e s  which bounds this  
vo lume e lement  at the control  sur face .  

The m a s s  flux of pa r t i c l e s  c a r r i e d  by the turbulent  gas  
s t r e a m ,  when t r e a t ed  as a vec to r ,  can be r e so lved  (just as  the 
veloci ty  of the turbulent  gas  s t r eam)  into a de te rmin i s t i c  and a 
s tochas t ic  component .  The fundamental  de te rmin i s t i c  component  
of the m a s s  flux vec to r  will be denoted by jM(r). On it we s u p e r -  
impose  the s tochas t ic  component,  which, for  s impl ic i ty ,  will be 
defined in t e r m s  of the turbulent  diffusivity e of solid p a r t i c l e s  
through the gas .  The m a s s  flux of p a r t i c l e s  with a mo i s tu r e  con-  
tent  within the [u, u + du] in te rva l  due to turbulent  diffusion is  
p ropor t iona l  to the product  of t he i r  concentra t ion  gradient  (ac-  
cord ing  to definition, the density of absolute  probabi l i t i es  is p r o -  
por t ional  to i ts  gradient  ~f(u; r ,  T)du) and the turbulent  diffusivity 
e, namely:  
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psevf (u; r, "0 du. 

The total mass  flux of par t i c les  is then equal to the sum of i ts de terminis t ic  and s tochast ic  components:  

[-- JM (r) f (u; r, ~) + p~ev/(u; r, ~)] du. (11) 

The t ime var ia t ion in the density of absolute probabil i t ies  f(u; r ,  ~) is, according to the Gauss - -Os t rograd-  
skii postulate,  determined f rom the following differential  equation: 

Of(u; r, T5) 1 
-~- r - - -  V ( JM (r) f (u; r, x) ) + �9 1 V (eP~Vf (u; r, ~)), (12) 

P~ P~ 

with the subscr ipt  T denoting the t ime var ia t ion of probabil i ty density due to a turbulent  s t r e am  of par t ic les .  

The total t ime var ia t ion in the density of absolute probabil i t ies  is de termined f rom Eqs. (10) and (12): 

hi(u; r, "0 oil(u; r, z)Z(u)] 1 i 
aT - = 0  au pc v ( j~ ( r ) f (u ;  r, T ) + T V ( e P ~ V / ( U ;  r, x)). (13) 

Equation (13) may be in te rpre ted  as express ing  the law of probabil i ty conservat ion  for  a random func- 
tion u(r,  z). 

If the random process  is s tat ionary,  then the density of absolute probabil i t ies  is independent of t ime 
T and the par t ia l  derivat ive with respec t  to t ime is this equal to zero; Eq. (13) becomes  then 

0 1 1 
D - - O  if(u; r))c(u)] = - -  v ( j ~ ( r ) f ( u ,  r) ) § - - V  ~e,,Vf(U, r)). (14) 

�9 Ou p~ p~ 

This equation can be simplif ied by the following change of var iables :  

[(u, r)•(u) = ~(U, r), (15) 

a (u) -= _ dU. (16) 
x (u) 

With (155 and (16) inser ted  into (145, a few neces sa ry  t rans format ions  yield 

q)p~ &p (U, r) . . . .  
Ou - - - V (  JM (r) qD ( U, r))-z-V[eP~V~~ ( U, r)). (17) 

Transformat ion  of the Differential  Equation for  the One-Dimensional  Case. The differential  equation 
(175, which descr ibes  the desiccat ion of solid par t i c les  c a r r i e d  by a turbulent  gas s t ream,  can be s impl i -  
fied under  cer ta in  assumptions.  

Let  us consider;  for  example,  the one-dimensional  case  in the direct ion of the x3-axis, which for  
c lar i ty ,  will be called the z-axis .  This axis is co l l inear  with but opposite to the gravitat ion vector .  In 
this case  Eq. (175 will become 

O(z)p &p(U,z) a ( ]M(z)cp(u ' , ~ a  ( 8 ) 
o u  az z)) -,- o 

- -  - -  ep~ ~ cp (V,  z) . ( lS )  

F o r  an analytical solution to Eq. (185 we make fur ther  simplif ications.  Function �9 (z) defined by Eq. 
(8) depends general ly  on the location of the mater ia l  in the duct. The difference between the maLsture con-  
tent levels  in the drying agent at a par t ic le  surface  x M and in the ambient s t r eam x, respect ively ,  is gen-  
era l ly  a function of the z-coordinate  and can, within a cer ta in  approximation,  be replaced by its a r i thmet ic  
mean. If we fur ther  assume that for  ve ry  small  pa r t i c les  Re --* O and Sh ~ 2, then also fix = const  at a 
constant molecu la r  diffusivity. Based on these assumptions,  we may approximately  let  

�9 (z) :- q) = const. (19) 

In the general  ease vec to r  JM is a function of the position vec to r  r;  in the one-dimensional  case 
JM is a function of the z -coordina te  only. In the f i r s t  approximation,  however,  JM in (185 may be regarded  
as the average  mass  flux of mater ia l ;  average of i ts values  at the des icca tor  entrance and exit 

This equation can be fu r the r  simplified by an introduction of new var iables :  

ep,d~ = dz; (21) 
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After  t r ans format ions ,  we have 

~(U, ~ ) = $ ( U ,  ~)exp ( 1 JM~)- 

;2 
~. 2 a r  (u ,  ~) a2r (u ,  ~) JM 
w e p s ~  -- 0~ 2 4 ~(U' ~). 

The s econd-o rde r  par t ia l  differential  equation (23) is  a nonhomogeneous one, 
var iable  

(22) 

(23) 

but with the new dependent 

r ~)=0)(U, ~ ) e x p ( ~ ) ,  (24) 

where 

it can be reduced to a homogeneous one 

1 =~ef~, 
G~ 

&o (u,  ~) o~-~ (u,  ~) 
~ :  05 

OU a~ ~ 

(2s) 

(26) 

This equation is analogous to the equation of t rans ien t  heat conduction 

Ot (x, T). = a O"-t (x, ~) 
O~ Ox ~" 

(27) 

and can be solved analyt ical ly for  given initial and boundary conditions. 

Conditions for  a Unique Solution. We will now make the following assumption.  

At z = 0 the mois tu re  content is a lmost  the same and equal to u in all par t ic les .  
z = 0  

We have then for  

F u r t h e r m o r e ,  

f (", z)t~=0 = [ (u, 0) = / (u) = ,f ~ for u = u A, 
[ 0 for u#u~. 

the mois tu re  content in pa r t i c l e s  at eve ry  z ~ 0 can be 

(2s) 

ti E < u < UA. (29) 

The cons t ra in ts  on the density of the probabi l i ty  distr ibution f(u, z) which would co r respond  to inequality 
(29) and to the general  p rope r t i e s  of function f(u, z) can be formula ted  as 

r (u  w z) : :  o, (30) 

u E 

.f f (u, z) d .  --  t. 
tl A 

(31) 

Relat ions (28), (30), and (31), which define the uniqueness conditions for  the solution to Eq. (26), will be 
expres sed  now in new independent va r i ab les  U, ~ and a dependent var iable  w(U, ~). Condition (28) becomes  
then 

and conditions (30), (31) become 

limm(U, ~.) : :  I ~'~; U = UA = O, 

ia~ [ O; U :~: 0 (32) 

lira r (U, ~) .... 0, (33) 
U ~ 0  
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Fig. 1. Probabi l i ty  density f(u, z) as a function of the 
mois tu re  content u and of the z-coordinate .  

u E 

j a_ IMg dU : 1, (34) - -  co(U, ~)exp - -  M 
2 , 

0 

respect ively .  

The t r ans fo rmed  differential  equation (26) together  with the t r ans fo rmed  uniqueness conditions (32), 
(33), (34) determine,  in the s ta t ionary ease,  the probabil i ty distribution density of mois ture  in par t ic les ,  
as a function of the i r  distance f rom the duct entrance.  

Analytical Solution. The absolute-probabi l i ty  distribution density of the random var iable  u(z) in the 
one-dimensional  s tat ionary case  is determined (under cer ta in  simplifying assumptions made ea r l i e r )  f rom 
the differential  equation (26) with initial conditions (33), (34) and boundary conditions (32). Since the bound- 
ary  condition (31) is not a continuous function, hence the most  effective method of solving this  problem 
mathematical ly  will be the operational  calculus according to Mikusinski which is based on convolution of 
the product  of functions and is par t icu la r ly  convenient fo r  p rob lems  of this  kind [8]. 

The Mikusinski method of operational  calculus will be applied here  to the var iab le  which is not con-  
tinuous under  the uniqueness conditions. In our  problem,  which involves definition (3), this var iable  is U. 

The final solution to the problem can be obtained in the following fo rm [7]: 

(o(U, ~)~  k(~)[ | 'ra2]/~0_ ~ (~ ]M;2] exp] u(.~ 4UJm/2)" .lihUA , (35) 

with 

~o (u) : const U~,TI exp (. constl~_/t , 

for  ~ = eonst and with coefficient  X(~) defined as 

R 

oxp[ )]du] ,3~ 
0 

If integral  (36) can be evaluated, then the resul t  will obviously be a special  t ranscendental  flmction. 
The quantity hUA in Eq. (35) r ep re sen t s  the Mikusinski shift opera tor .  

4. Analysis  of the Solution. The resul t ing Eq. (34) makes  it feasible to calculate  function w{U, ~), 
which is a t r a n s f o rm  of the absolute-probabi l i ty  distribution density of the random var iable  u(z) in the one-  
dimensional s tat ionary case.  The fo rm of function ~o(U, ~) according to Eq. (35) indicates that, while it 
does not cor respond  to the normal  two-dimensional  law, it  can, on the basis  of the definition of p a r a m e t e r  
X($), be descr ibed  by special  t ranscendental  functions. 
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The resu l t ing  solution for  w(U, ~) and the probabi l i ty  dis tr ibut ion densi ty f(u, z), which has  been 
specia l ly  ca lcula ted  a f t e r  an inve r se  t r an s fo r ma t ion ,  yield specif ic  e s t i m a t e s  as  to how random turbulent  
f luctuat ions in the s t r e a m  of drying agent  affect  the uni formi ty  of m o i s t u r e  content  in solid p a r t i c l e s  c a r -  
r i ed  by pneumat ic  t r a n s p o r t .  As an example ,  we have ca lcula ted  func t ions  (35) and (36) n u m e r i c a l l y  on a 
model EVM-Z-23  compu te r  with the aid of  an i nve r se  t r ans fo rma t ion ,  and a lso  the probabi l i ty  dis t r ibut ion 
densi ty of the random va r i ab l e  u (at va r i ous  va lues  of z) for  the following p a r a m e t e r s :  

tL - -  150~ IJMI ~ 3,3 kg/m2,sec; e = 0.412 mZ/sec; 

p~ = 2.25.103 kg/m3; ~ = 0,046 m 4. sec2/kg2; 

u 0 - u  E = 0.531 kg/kg. 

Some r e su l t s  of th is  n u m e r i c a l  evaluat ion a r e  shown in Table 1. The ca lcu la ted  va lues  of the "probability 
dis tr ibut ion densi ty of f(u) exceed  1029, which m a k e s  the i r  g raphica l  p resen ta t ion  difficult.  F o r  th is  r e a s o n  
and for  c la r i ty ,  the t r end  of function f(z) i s  shown only schemat ica l ly .  

Thus, such a calcula t ion based  on the given s impl i fy ing a s sumpt ions  y ie lds  data on the un i formi ty  of 
desiccat ion,  which  a re  e spec ia l ly  impor tan t  in those  e a s e s  where  the subsequent  technological  p r o c e s s i n g  
r equ i r e s  that  p a r t i c l e s  of the m a t e r i a l  be dr ied  to a definite res idua l  m o i s t u r e  level  with r a t h e r  l i t t le  
va r i ance .  

f ~ ,  T) 
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ts the probabi l i ty  densi ty function; 
~s the de te rmin i s t i c  component  of the m a s s  flux of p a r t i c l e s  vec tor ;  
is  the m a s s  flux of evapora t ing  subs tance ,  kg / sec ;  
ts the r ad i u s -vec t o r ;  
zs the specif ic  su r face  of p a r t i c l e s  in d i spers ion ,  m2/kg; 
~s the t e m p e r a t u r e ,  ~ 
ts  the m o i s t u r e  content  in the solid pa r t i c l e s ,  kg/kg;  
~s the m o i s t u r e  content  in the gas,  kg/kg;  
i s  the m o i s t u r e  content  in the gas  at the su r face  of pa r t i c l e s ,  kg/kg;  
Ls the space  coordinate ,  m; 
zs the m a s s ,  kg; 
t s  the probabi l i ty;  
zs the s p a c e - - t i m e  var iab le ;  
zs a va r i ab l e  defined by Eq. (16); 
~s the vo lume,  m3; 
is  a coeff ic ient  defined by Eq. (25); 
is  the m a s s  t r a n s f e r  coeff ic ient ,  k g / m  2 �9  
~s the turbulent  diffusivity; 
~s a coordinate  defined by Eq. (21); 
ts  a coeff icient  defined by Eq. (36); 
i s  the density,  kg/m3; 
zs t ime,  sec; 
a r e  functions defined by Eqs.  (23), (26), (8), (15), (5); 
is the Reynolds  number ;  
i s  the Sherwood number .  

S u b s c r i p t s  

A r e f e r s  to the en t rance  conditions; 
M r e f e r s  to the solid ma te r i a l ;  
E r e f e r s  to the equi l ib r ium state;  
s r e f e r s  to the dry s ta te .  
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